A New Weighted Graph-Based Partitioning Algorithm for Decentralized Nonlinear Model Predictive Control of Large-Scale Systems

نویسندگان

  • Karim Salahshoor
  • Saeed Kamelian
چکیده

This paper proposes a grouping algorithm for partitioning large-scale nonlinear dynamical systems based on graph theory. The algorithm incorporates a novel scheme to quantify the strengths of graph edges, representing the degree of couplings among the system variables via sensitivity functions. This leads to a weighted graph topology with different weights on the obtained graph edges. An algorithm is then developed to partition systems into some sub-graphs based on the weighted graph. A decentralized nonlinear model predictive control (NMPC) methodology is then formulated for the sub-systems. The overall NMPC design methodology is finally evaluated on a process plant benchmark, consisting of two continuous stirred tank reactors (CSTRs) and a flash separator with a recycle path. A set of tracking and regulatory tests is comparatively conducted exploring the successful performance of the proposed algorithm in the context of the decentralized NMPC methodology with respect to an alternative centralized NMPC control scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OBSERVER-BASED INTELLIGENT DECENTRALIZED VARIABLE STRUCTURE CONTROLLER FOR NONLINEAR NON-CANONICAL NON-AFFINE LARGE SCALE SYSTEMS

In this paper, an observer based fuzzy adaptive controller (FAC) is designed fora class of large scale systems with non-canonical non-affine nonlinear subsystems. It isassumed that functions of the subsystems and the interactions among subsystems areunknown. By constructing a new class of state observer for each follower, the proposedconsensus control method solves the problem of unmeasured sta...

متن کامل

A Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems

This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...

متن کامل

Decentralized Model Reference Adaptive Control of Large Scale Interconnected Systems with Time-Delays in States and Inputs

This paper investigates the problem of decentralized model reference adaptive control (MRAC) for a class of large scale systems with time varying delays in interconnected terms and state and input delays. The upper bounds of the interconnection terms are considered to be unknown. Time varying delays in the nonlinear interconnection terms are bounded and nonnegative continuous functions and thei...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012